Data collection

$$
\begin{array}{ll}
\text { Siemens SMART CCD area- } & \begin{array}{l}
2922 \text { reflections with } \\
\text { detector diffractometer }
\end{array} \\
\omega \text { scans } & R_{\text {int }}=0.045 \\
\text { Absorption correction: none } & \theta_{\text {max }}=28.5^{\circ} \\
\text { 12365 measured reflections } & h=-14 \rightarrow 14 \\
\text { 4651 independent reflections } & k=0 \rightarrow 13 \\
& l=0 \rightarrow 23
\end{array}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.180$
$S=1.142$
4208 reflections
245 parameters
H -atom parameters constrained

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0589 P)^{2}\right. \\
& +0.7524 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Sheldrick, 1997)

Extinction coefficient: 0.0040 (12)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected bond lengths (\AA)

$\mathrm{Ol}-\mathrm{Cl1}$	$1.221(3)$	$\mathrm{C} 4-\mathrm{Cl0}$	$1.402(4)$
$\mathrm{O} 2-\mathrm{Cl} 8$	$1.364(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.388(5)$
$\mathrm{O} 2-\mathrm{Cl}$	$1.407(3)$	$\mathrm{C} 5-\mathrm{Cl0}$	$1.450(4)$
$\mathrm{O} 3-\mathrm{Cl} 8$	$1.199(3)$	$\mathrm{C}-\mathrm{C} 7$	$1.376(5)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.378(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.406(5)$
$\mathrm{Cl}-\mathrm{C} 9$	$1.402(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.454(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.410(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.412(3)$
$\mathrm{C} 2-\mathrm{Cl1}$	$1.493(3)$	$\mathrm{C} 11-\mathrm{Cl2}$	$1.495(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.364(3)$	$\mathrm{C} 18-\mathrm{Cl} 9$	$1.479(3)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{O}^{\prime}$	0.93	2.52	$3.398(4)$	156

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle (0,88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating 30 initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: $\operatorname{SHELXTL}$. Software used to prepare material for publication: SHELXTL and PARST (Nardelli, 1995).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

[^0]
References

Allen, F. H., Kennard, O., Watson, D. G.. Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Crouse, D. J., Hurlbut, S. L. \& Wheeler. D. M. S. (1981). J. Org. Chem. 46, 374-378.
Hauck. F. P.. Cimarusti, C. M. \& Sundeen, J. E. (1977). Chem. Abstr. 86. 43447 U .

Nardelli, M. (1995). J. Appl. Cry:st. 28, 659.
Sheldrick, G. M. (1997). SHELXTL. Structure Determination Software Programs. Version 5.10. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.

2-Hydroxy-5-methyl-2-oxo-6-phenyl-4-phos-phonomethyl-1,4,2-oxazoniaphosphorinane \dagger

Jean-François Saint-Clair, ${ }^{a}$ Fabrice Siméon, ${ }^{a}$ Didier
Vilemin ${ }^{\text {a }}$ and Marie-Thérèse Averbuch-Pouchot ${ }^{b}$
${ }^{a}$ Ecole Nationale Supérieure d'Ingénieurs de Caen (ISMRA),
Université de Caen, UMR CNRS 6507, 6 Boulevard du
Maréchal Juin, 14050 Caen, France, and ${ }^{\text {b }}$ LEDSS, UMR
CNRS 5616, Université Joseph Fourier, BP53, 38041
Grenoble CEDEX 9, France. E-mail: marie-therese.
averbuch@ujf-grenoble.fr

(Received 16 September 1998; accepted 3 December 1998)

Abstract

The title compound, $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{P}_{2}$, crystallizes as a racemic zwitterion in the space group PCa_{1}. The molecules are interlinked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Our ongoing investigation of aminophosphonates as supports for organic-inorganic materials (Ortiz-Avila et al., 1994) led us to study procedures to prepare new achiral and chiral compounds of this kind. Moreover, these compounds are known either as analogues of natural amino acids exhibiting biological activities (Engel, 1977, 1987) or for their extraordinary chelating properties (Schwarzenbach et al., 1948).

The main route to these compounds is a Mannichtype reaction first used by Fields (1952), but Moedritzer \& Irani (1966) improved this reaction so that it proceeds almost quantitatively in most cases. Benzylamine

[^1]and phenethylamine gave the corresponding phosphonic acids in very good yields in a monomode cavity, but, surprisingly, many unexpected results were observed when using some chiral compounds, such as (R) butanolamine and (+)- or (-)-pseudoephedrines. Thus, no product crystallized directly when (+)- or (-)-norephedrine was irradiated, while racemic norephedrine gave a 60% yield of precipitate after 15 min of irradiation. The main spectroscopic characteristic of the title compound, (1), is the presence of two distinctive peaks in the ${ }^{31} \mathrm{P}$ NMR spectrum. This lack of symmetry, also observed in the ${ }^{13} \mathrm{C}$ NMR spectrum, led us to undertake the determination of the structure of (1).

(1)

The crystallographic study of (1) shows that the crystal has a zwitterion structure with localization of the negative charge on the methylenephosphonic group A (the methylenephosphonic group taking part in the formation of the heterocycle is denoted as A and the second methylenephosphonic group as B). As shown in Fig. 1, the oxazaphosphorinane ring adopts a chair conformation, as previously observed both in the 4 -phospho-nomethyl- and 4-hydroxyethyl-2-hydroxy-2-oxo-1,4,2oxazaphosphorinanes (Makaranets et al., 1987). It is also worth noting that in group B the distances are those expected for protonated units in classical aminophosphonic acids: 1.488 (2) \AA for the $\mathrm{P} 2=\mathrm{O} 5$ double bond, 1.532 (2) and $1.539(2) \AA$ for the $\mathrm{P}-\mathrm{OH}$ single bonds, and 1.816 (2) \AA for the $\mathrm{P}-\mathrm{C}$ single bond (Table 1). Deprotonation and participation of group A in the heterocycle influence mainly the length of the P1-O1 bond [1.588(1) Å] which becomes longer than the usual single bond. On the other hand, the P O bonds involving atoms O 2 [1.478(1) \AA] and O 3 [1.498 (1) \AA A of group A are formally intermediate between single $\mathrm{P}-\mathrm{O}^{-}$and $\mathrm{P}=\mathrm{O}$ double bonds, but, in fact, do not differ from the $\mathrm{P}=\mathrm{O}$ distance in group B. The $\mathrm{P}-\mathrm{C}$ distances of groups A and B are very similar [P1-C2 1.812 (2) and P2-C1 1.816 (2) Å]. All these observations agree with the distances reported previously for 4-phosphonomethyl-2-hydroxy-2-oxo-1,4,2oxazaphosphorinane (Makaranets et al., 1987).

Fig. 1. ORTEPII drawing (Johnson, 1976) of the title compound with 45% probability displacement ellipsoids.

As can be inferred from the geometry of the molecule, no intramolecular hydrogen bond is observed in this atomic arrangement, but three intermolecular hydrogen bonds exist. They build a two-dimensional network parallel to the ac plane. It should be noted that, among these three hydrogen bonds, one of them, O6$\mathrm{H} 11 \cdots \mathrm{O}$, is almost symmetrical, whereas the other two are normal (Table 2). One can also observe that these bonds link two enantiomeric molecules via H 16 and H17, and two identical ones via H11. These observations are in agreement with the fact that crystallization was possible with the racemic mixture, but was not possible with optically pure norephedrine.

Experimental

An aqueous solution (4 ml of water) of phosphorous acid ($20 \mathrm{mmol}, 1.64 \mathrm{~g}$) in hydrochloric acid ($37 \mathrm{wt} \%$ in water, 4 ml) was added to norephedrine ($10 \mathrm{mmol}, 1.80 \mathrm{~g}$) stored in a quartz tube. The mixture was irradiated for 5 min at 200 W [irradiation was performed in an MES-focused microwave cavity TE_{01} at 2450 MHz with a universal generator MES 73800 (Villemin \& Sauvaget, 1994; Villemin \& Martin, 1995)]. Formaldehyde ($37 \mathrm{wt} \%$ in water, $40 \mathrm{mmol}, 3.24 \mathrm{ml}$) was then added rapidly. The mixture was refluxed under microwave irradiation at 400 W for 8 min and irradiation was stopped when crystallization was observed. The mixture was filtered and the white powder obtained was washed with ethanol and water. Recrystallization from pure water gave $2.03 \mathrm{~g}(60 \%)$ of pure (1) [m.p. $=526-528 \mathrm{~K}$ (darkens)]. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, $\left.\mathrm{K}_{2} \mathrm{CO}_{3}\right): 1.17\left(d, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J=7.2 \mathrm{~Hz}\right), 3.35-3.83(\mathrm{~m}, 4 \mathrm{H}$, CH_{2}), $4.18\left(q d, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{3},{ }^{3} J=3.1,{ }^{3} J=7.2 \mathrm{~Hz}\right), 5.90(d$, $\left.1 \mathrm{H}, \mathrm{CH}-\mathrm{Ph},{ }^{3} J=3.1 \mathrm{~Hz}\right), 7.40-7.55$ p.p.m. $\left(m, 5 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right)$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}\right): 3.22\left(s, \mathrm{CH}_{3}\right), 45.00\left(d, \mathrm{CH}_{2}-\right.$ P), $47.00\left(d, \mathrm{CH}_{2}-\mathrm{P}\right), 60.87\left(d, \mathrm{CH}-\mathrm{CH}_{3}\right), 79.28(s, \mathrm{CH}-$ Ph), $125.98\left(s,{ }^{3} \mathrm{C}_{\text {arom }}\right), 128.31\left(s,{ }^{4} \mathrm{C}_{\text {arom }}\right), 128.93\left(s,{ }^{2} \mathrm{C}_{\text {arom }}\right)$, 138.45 p.p.m. ($s,{ }^{1} \mathrm{C}_{\text {arom }}$); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$): 6.12 (s, P—cycle), 8.20 p.p.m. (s); IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$): $3060(s, \mathrm{OH})$, $2998(w), 1332(w), 1178(v s, \mathrm{P}=\mathrm{O}), 1120(s, \mathrm{P}=\mathrm{O}), 1082$ $(v s, \mathrm{P}-\mathrm{O}), 982(s, \mathrm{P}-\mathrm{O}), 936(\mathrm{~m})$.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{P}_{2}$
$M_{r}=321.21$
Orthorhombic
Pca2,
$a=14.361$ (2) \AA
$b=13.711$ (2) \AA
$c=7.475(2) \AA$
$V=1471.9(4) \AA^{3}$
$Z=4$
$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 2306 measured reflections 2306 independent reflections 1885 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F
$R=0.026$
$w R=0.033$
$S=1.836$
1885 reflections
180 parameters
H-atom parameters not refined

$$
w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.
$$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 24 reflections
$\theta=10.9-11.9^{\circ}$
$\mu=0.318 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Elongated prism
$0.31 \times 0.29 \times 0.26 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
& \theta_{\max }=29.93^{\circ} \\
& h=0 \rightarrow 18 \\
& k=0 \rightarrow 19 \\
& l=0 \rightarrow 10
\end{aligned}
$$

2 standard reflections every 120 reflections intensity decay: 4.15%

$$
\left.+0.00016\left|F_{o}\right|^{2}\right]
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA{ }^{\circ},^{\circ}$)

P1-O1	1.588 (1)	P2-05	1.488 (2)
$\mathrm{P} 1-\mathrm{O} 2$	1.478 (1)	P2-06	1.532 (2)
$\mathrm{P} 1-\mathrm{O} 3$	1.498 (1)	$\mathrm{P} 2-\mathrm{Cl}$	1.816 (2)
$\mathrm{Pl}-\mathrm{C} 2$	1.812 (2)	$\mathrm{Ol}-\mathrm{C} 4$	1.451 (2)
$\mathrm{P} 2-\mathrm{O} 4$	1.539 (2)	$\mathrm{N}-\mathrm{C} 2$	1.502 (2)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 2$	110.52 (7)	O5-P2-C1	107.95 (7)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 3$	107.84 (7)	$\mathrm{O} 6-\mathrm{P} 2-\mathrm{Cl}$	108.88 (8)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{C} 2$	102.60 (7)	$\mathrm{Pl}-\mathrm{Ol}-\mathrm{C} 4$	113.7 (1)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 3$	117.23 (8)	$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 3$	112.5 (1)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{C} 2$	109.56 (8)	$\mathrm{P} 2-\mathrm{Cl}-\mathrm{N}$	114.1 (1)
$\mathrm{O} 3-\mathrm{Pl}-\mathrm{C} 2$	108.06 (8)	$\mathrm{P} 1-\mathrm{C} 2-\mathrm{N}$	113.3 (1)
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 5$	116.93 (8)	$\mathrm{N}-\mathrm{C} 3-\mathrm{C} 11$	112.5 (1)
O4-P2-O6	107.48 (8)	C4-C3-C11	114.2 (2)
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{Cl}$	103.26 (8)	$\mathrm{Ol}-\mathrm{C} 4-\mathrm{C} 3$	108.6 (1)
O5-P2-O6	111.81 (9)	$\mathrm{Ol}-\mathrm{C} 4-\mathrm{C} 5$	110.6 (1)

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D - $\mathrm{H} \cdots \mathrm{A}$	$D — \mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	D. . A	D-H. . A
O4-H16 . $\mathrm{OF}^{\text {i }}$	0.96	1.58	2.517 (2)	162
$\mathrm{O} 6-\mathrm{H} 11 . . \mathrm{O} 3^{11}$	1.18	1.26	2.432 (2)	168
$\mathrm{N}-\mathrm{H} 17 \ldots \mathrm{O} 2^{\text {i }}$	0.93	1.78	2.629 (2)	151

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1396). Services for accessing these
 data are described at the back of the journal.

[^1]: \dagger Zwitterionic name: 5-methyl-2-oxido-2-oxo-6-phenyl-1.4.2-oxa-zoniaphosphorinan-4-ylmethylphosphonic acid.

